Chem. Ber. 104, 993-1000 (1971)

Herbert Schumann, Othmar Stelzer, Jürgen Kuhlmey und Udo Niederreuther

Organometallphosphin-substituierte Übergangsmetall-Komplexe, XII¹⁾

Organometallphosphin-pentacarbonyl-chrom-, -molybdän- und -wolfram-Komplexe²⁾

Aus dem Institut für Anorganische und Analytische Chemie der Technischen Universität Berlin

(Eingegangen am 2. Dezember 1970)

Hexacarbonylchrom reagiert 1. mit Tri(tert.-butyl)-phosphin, Tris(trimethylsilyl)-, Tris(trimethylsgermyl)- und Tris(trimethylstannyl)-phosphin sowie 2. mit Trimethylsilyl-diphenyl-phosphin, Bis(trimethylsilyl)-phenyl-phosphin und Bis(trimethylstannyl)-phenyl-phosphin unter Abspaltung eines CO-Liganden und Bildung entsprechender Organometallphosphinpentacarbonyl-chrom(0)-Komplexe. Analog zu 1. reagieren Hexacarbonylmolybdän und Hexacarbonylwolfram mit Tri(tert.-butyl)-phosphin, Tris(trimethylgermyl)- und Tris(trimethylstannyl)-phosphin unter Bildung entsprechender Komplexe. Die Infrarot-, UV-, ¹H-NMR- und ³¹P-NMR-Spektren werden mitgeteilt und diskutiert.

Organometalphosphine Substituted Transition Metal Complexes, XII¹⁾

Organometalphosphinepentacarbonylchromium(0), -molybdenum(0), and -tungsten(0) Complexes²

The reaction of hexacarbonylchromium with 1. tri(*tert*-butyl)phosphine, tris(trimethylsilyl)-, tris(trimethylgermyl)-, and tris(trimethylstannyl)phosphine as well as 2. with (trimethylsilyl)-diphenylphosphine, bis(trimethylsilyl)phenylphosphine, and bis(trimethylstannyl)phenylphosphine results in the elimination of one CO ligand and the formation of the corresponding organometalphosphinepentacarbonylchromium(0) complexes. In analogy to 1. hexacarbonyl molybdenum and hexacarbonyltungsten react with tri(*tert*-butyl)phosphine, tris(trimethylstannyl)phosphine to form the corresponding complexes. The i.r., u.v., ¹H n.m.r., and ³¹P n.m.r. spectra are reported and discussed.

Die spektroskopische Untersuchung organometallphosphin-substituierter Übergangsmetallcarbonyl-Komplexe von Nickel³⁾, Kobalt⁴⁾, Eisen⁵⁾ und Mangan¹⁾ erlaubte Aussagen über die Bindungsverhältnisse in den als Liganden an das Über-

¹⁾ XI. Mitteil.: H. Schumann, O. Stelzer, J. Kuhlmey und U. Niederreuther, J. organomet. Chem., im Druck.

²⁾ Vorläufige Mitteil.: H. Schumann und O. Stelzer, Angew. Chem. 80, 318 (1968); Angew. Chem. internat. Edit. 7, 300 (1968); H. Schumann, O. Stelzer und U. Niederreuther, J. organomet. Chem. 16, P64 (1969).

³⁾ H. Schumann, O. Stelzer, U. Niederreuther und L. Rösch, Chem. Ber. 103, 1383 (1970).

⁴⁾ H. Schumann, O. Stelzer und U. Niederreuther, Chem. Ber. 103, 1391 (1970).

⁵⁾ H. Schumann, O. Stelzer, U. Niederreuther und L. Rösch, Chem. Ber. 103, 2350 (1970).

gangsmetall gebundenen Organometallphosphinen. Um die bei diesen Untersuchungen gewonnenen Erkenntnisse auf eine breitere Grundlage zu stellen, haben wir Organometallphosphine mit den Hexacarbonylen von Elementen der VI. Nebengruppe des Periodensystems umgesetzt und die Daten der spektroskopischen Untersuchung der neuen Komplexe mit den Meßergebnissen analoger Tricarbonylnickel-, Nitrosyldicarbonylkobalt-, Tetracarbonyleisen-, Cyclopentadienyldicarbonylmanganund Methylcyclopentadienyldicarbonylmangan-Komplexe verglichen.

Darstellung und Eigenschaften

Bestrahlt man Lösungen von Hexacarbonylchrom, Hexacarbonylmolybdän oder Hexacarbonylwolfram und Tri(tert.-butyl)-phosphin (1), Tris(trimethylsilyl)-phosphin (2), Tris(trimethylgermyl)-phosphin (3) bzw. Tris(trimethylstannyl)-phosphin (4) in Tetrahydrofuran bei Raumtemperatur mit UV-Licht, so bilden sich unter CO-Abspaltung die Komplexe 1a-4a, 1b-4b und 1c-4c in Rohausbeuten zwischen 80 und 99%.

$(CO)_{6}M + P[M'(CH_{3})_{3}]_{3}$		<u>hv</u>	(CC) ₅ MP[M'(CH ₃) ₃] ₃ + CO
1-4			1a-	4a, 1b	-4b, 1c-4c
M' M	-	Cr	Мо	W	
C	1	1a	1b	1c	
Si	2	2a	(2b)	(2c)	
Ge	3	3a	3b	3c	
Sn	4	4a	4b	4c	

Während es nicht gelingt, **2b** und **2c** in reiner Form unzersetzt zu isolieren, erhält man alle anderen Komplexe nach Abziehen des Lösungsmittels, Umkristallisieren aus Tetrahydrofuran/Pentan-Gemischen und Sublimation in hochreiner Form. Es sind gelbe, gegen Luftsauerstoff und Wasser stabile Substanzen von bemerkenswerter thermischer Beständigkeit. In den meisten organischen Lösungsmitteln, mit Ausnahme von Alkoholen und halogenierten Kohlenwasserstoffen, sind sie gut und ohne Zersetzung löslich.

In diesen Lösungen zerfallen die Komplexe jedoch langsam bei längerem Stehen unter CO-Entwicklung und Abscheidung grüner bis brauner Niederschläge.

Analog erhält man aus Hexacarbonylchrom und Trimethylsilyl-diphenyl-phosphin (5), Bis(trimethylsilyl)-phenyl-phosphin (6) und Bis(trimethylstannyl)-phenyl-phosphin (7) die Phosphinkomplexe 5a, 6a und 7a.

Spektroskopische Untersuchungen

IR-Spektren

Die Moleküle (CO)₅M-P(M'R₃)₃ entstehen durch Vereinigung einer C_{3v}-Einheit (P(M'R₃)₃) und einer C_{4v}-Einheit (M(CO)₅). Für die hieraus im günstigsten Fall resultierende Gesamtsymmetrie C_s sind 5 IR-aktive CO-Valenzschwingungen zu erwarten.

Im Falle der untersuchten Komplexe 1a –4a, 1b, 3b, 4b und 1c, 3c, 4c beobachtet man jedoch in den in verdünnter Pentanlösung aufgenommenen Spektren nur 4 CO-Banden, was auf eine C_s-Konfiguration mit einer Spiegelebene, in der 2 radiale *trans*-ständige CO-Gruppen und eine axiale CO-Gruppe liegen, schließen läßt (Tab. 1). Da die 2 asymmetrischen Radialschwingungen A' und A'' für die Punktgruppe C, die den Schwingungen der Rasse E korreliert werden können, hier zufällig entartet sind, ist die wahre C_s-Symmetrie mit einer C_{4v}-Symmetrie in erster Näherung gleichzusetzen. Tab. 1 zeigt deutlich, daß bei den hier untersuchten Komplexen der Einfluß der Phosphinliganden auf die Lage der höchsten CO-Valenzschwingungsbande (A₁) minimal ist und zum Teil innerhalb der Fehlergrenzen der Messungen liegt. Die

Verbindung		vCO ^{b)}				ν _{as} νeF	PM'3(E) PM'3(E1)	$\nu_{s}PM'_{3}(A_{1})$	Δν
P[C(CH ₃) ₃] ₃ (1)							662 m	637 m	
(CO) ₅ CrP[C(CH ₃) ₃] ₃ (1a)	2061 m	1994 st	1940 st	1855 m			658 m	637 m	-4
(CO) ₅ MoP[C(CH ₃) ₃] ₃ (1b)	2071 m	1946 st	1911 m				656 m	561 m	-6
(CO) ₅ WP[C(CH ₃) ₃] ₃ (1 c)	2071 m	1936 st	1902 m				656 m	560 m	-6
P[Si(CH ₃) ₃] ₃ (2)							460 st	380 m	
(CO) ₅ CrP[Si(CH ₃) ₃] ₃ (2a)	2086 m	1959 st	1923 m				463 m 447 m		+3
P[Ge(CH ₃) ₃] ₃ (3)							397 st	320 m	
(CO) ₅ CrP[Ge(CH ₃) ₃] ₃ (3a)	2069 m	1988 st	1946 st	1920 m			398 st 394 st		+1
(CO) ₅ MoP[Ge(CH ₃) ₃] ₃ (3b)	2078 m	1991 st	1953 st	1928 m			410 m 400 m		+13
(CO) ₅ WP[Ge(CH ₃) ₃] ₃ (3c)	2074 m	1975 st	1938 st	1903 m			383 st		
P[Sn(CH ₃) ₃] ₃ (4)							351 st	284 m	
$(CO)_5 CrP[Sn(CH_3)_3]_3$ (4a)	2052 m	1932 st	1899 m				352 m 347 m		+1
(CO) ₅ MoP[Sn(CH ₃) ₃] ₃ (4b)	2068 m	1993 st	1946 st	1932 m			347 m		4
(CO) ₅ WP[Sn(CH ₃) ₃] ₃ (4c)	2065 m	2007 st	1962 st	1928 m			350 m		- 1
$(CO)_5CrPSi(CH_3)_3(C_6H_5)_2$ (5a)	2049 m	2004 Sch	1972 st	1942 st	1919 m	1890 m			
(CO) ₅ CrP[Si(CH ₃) ₃] ₂ C ₆ H ₅ (6a)	2049 m	1996 Sch	1972 st	1965 st	1927 m	1887 m			
(CO) ₅ CrP[Sn(CH ₃) ₃] ₂ C ₆ H ₅ (7a)	2050 m	1991 Sch	1928 st	1930 st	1923 m	1900 m			

Tab. 1. IR-Absorptionen^{a)} (in cm^{-1}) der Phosphine 1-4 sowie der Komplexe 1a-7a, 1b, 3b, 4b und 1c, 3c, 4c (st = stark, m = mittel, Sch = Schulter)

a) Perkin Elmer Infrarot-Spektrophotometer Modelle 221 und 337, CsBr-Optik bzw. Gitter, in Nujol.

b) Alle CO-Valenzschwingungen in Pentan.

Erklärung für diese Tatsache ist in besonderen Überlappungsverhältnissen zwischen den besetzten nichtbindenden d-Orbitalen des Metalls M und den leeren π^* -Orbitalen der CO-Gruppen im oktaedrischen Komplex zu suchen. Wenn 5 CO-Gruppen und das Phosphin sich in oktaedrischer Verteilung um das Übergangsmetallatom M anordnen und mit ihm durch σ -Bindungen verknüpft sind, so sind noch die d_{xz}- (E), d_{yz}- (E) und d_{xy}-Orbitale (B₂) zu π -Bindungen mit den Liganden verfügbar. Man ersieht daraus, daß um jedes der beiden entarteten d-Orbitale (d_{xz} und d_{yz}) 2 *trans*ständige äquatoriale CO-Gruppen konkurrieren. Die Wechselwirkung Metall-Phosphor im Sinne einer Rückbindung ist dadurch erschwert und findet nur in geringem Ausmaß statt. Als Folge davon kann der Ligand keinen nennenswerten Einfluß auf die Rückbindung in der M(CO)₅-Einheit ausüben. Die CO-Frequenzen spiegeln dies deutlich wider.

Die geringfügige Abnahme von vCO(A₁) läßt andeutungsweise für die Liganden sowohl bei den Chrom- als auch bei den Molybdän- und Wolfram-Komplexen folgende Reihe abnehmenden π -Acceptorvermögens erkennen: 2 > 3 > 1 > 4, was in Übereinstimmung mit den bisherigen Ergebnissen steht.

Die erhöhte Zahl IR-aktiver CO-Valenzschwingungen bei den Komplexen **5a**, **6a** und **7a**, die unsymmetrische Phosphinliganden besitzen, läßt sich sicher nicht allein durch die Annahme lösungsmittelstabilisierter Konformationsisomerer deuten. Hier muß zusätzlich mit einer Aufspaltung der entarteten Schwingung unter dem Einfluß des unsymmetrischen Liganden gerechnet werden.

Entsprechend der Symmetrieerniedrigung des M(CO)₅-Gerüstes von C_{4v} nach C_s bei Kopplung mit der Einheit P(M'R₃)₃ ist für das Gerüst MPM'₃ der Symmetrie C_{3v} ebenfalls ein Verlust von Symmetrieelementen zu erwarten. Unter Vernachlässigung von Kopplungen zwischen den inneren Schwingungen der (CH₃)₃M'-Gruppen und der M(CO)₅-Gruppen mit jenen des MPM'₃-Gerüstes ist es jedoch möglich, unter Verwendung des Begriffes der "Lokalsymmetrie" für die nähere Umgebung des Phosphoratomes, die Komplexe in dieser Sicht als Fünf-Masse-Moleküle der Symmetrie C_{3v} zu behandeln. Tab. 1 zeigt, daß die Frequenzdifferenzen $\Delta v = v_e PM'_3 - v_{as}PM'_3$, die als ein Maß für die mit der Komplexierung verbundene Änderung der Stärke der P--M'-Bindung dienen können, sehr klein sind. Der Ladungsabzug vom Phosphor und aus der P--M'-Bindung ist demnach sehr gering; eine Schwächung der P--M'-Bindung ist kaum feststellbar und das Aufstellen einer Reihe graduierter Bindungsschwächung somit nicht sinnvoll.

Im Falle von 2a, 3a, 3b und 4a konnte eine geringfügige Frequenzaufspaltung von $\nu_e PM'_3$ beobachtet werden. Hier kommt der Einfluß der C_{4v}-Symmetrie der Ligandenanordnung im M(CO)₅-Rest dieser Komplexe zum Ausdruck. Diese Beobachtung steht mit dem Auftreten der 4. vCO in Einklang.

¹H-NMR-Spektren

Die Aufnahme der ¹H-NMR-Spektren der Komplexe erfolgte an 10 proz. Lösungen in Benzol. Die für eine Diskussion der Bindungsverhältnisse wichtigen Kopplungskonstanten sind aus Tab. 2 zu entnehmen. Setzt man die Größe der Kopplungskonstanten J (¹HCM'³¹P) als Maß für die Positivierung des Phosphors, so nimmt diese sowohl beim Übergang von 1 nach 4, als auch von 1a nach 4a, 1b nach 4b und 1c

Verbindung		$J_{\rm K}$	$J_{\rm L}$	$\frac{\Delta J}{J_{\rm L}}$	$\delta_{\mathbf{K}}$	δ_{L}	Δ
$(CO)_5 CrP[C(CH_3)_3]_3$	(1a)	11.6	9.7	0.196	105.4	62,7	-42,7
$(CO)_5MoP[C(CH_3)_3]_3$	(1b)	11.7	9.7	0.206	103.8	62.7	41.1
$(CO)_5WP[C(CH_3)_3]_3$	(1c)	11.9	9.7	0.227	98,7	-62.7	- 36.0
(CO) ₅ CrP[Si(CH ₃) ₃] ₃	(2a)	4.9	4.6	0.065	+232	+ 251	-19
$(CO)_5CrP[Ge(CH_3)_3]_3$	(3a)	6.5	4.0	0,625	+202	+ 228	26
(CO)5MoP[Ge(CH3)3]3	(3b)	6.6	4.0	0.650	+182	+228	46
(CO)5WP[Ge(CH3)3]3	(3c)	6.0	4.0	0.500	+202	+228	26
$(CO)_5CrP[Sn(CH_3)_3]_3$	(4a)	3.2	1.95	0.641	+303	+330	-27
(CO) ₅ MoP[Sn(CH ₃) ₃] ₃	(4b)	3.3	1.95	0.692	+323	+330	- 7
(CO) ₅ WP[Sn(CH ₃) ₃] ₃	(4c)	3.5	1.95	0.795	+ 346	+ 330	+16
(CO)5CrP[Sn(CH3)3]2C6H5	(7a)	3.3	2.0	0.650			

Tab. 2. Kopplungskonstanten $J(^{1}HCM'^{3}P)$ im Komplex (J_{K}) und in den freien Liganden (J_{L}) (alle Werte in Hz; Varian A 60, 60 MHz) und chemische Verschiebungen der ^{31}P -NMR-Signale der Komplexe (δ_{K}) und der freien Liganden (δ_{L}) (δ -Werte in ppm*), 85 proz. Phosphorsäure als externer Standard; Varian HA-100 (40.5 MHz))

nach **4c** regelmäßig ab. Wird die Größe $\frac{\Delta J}{J_L}$ ³⁾ als Kriterium für die relative Änderung des s-Charakters der P-M'-Bindung herangezogen, so ergibt sich die Reihenfolge **2**<**1**<**3**<**4**. Die Größen $\frac{\Delta J}{J_L}$ sind, wie Tab. 2 zeigt, nicht in dem Maße von Rückbindungseffekten abhängig, wie dies für die vCO(A₁)-Frequenzen gilt. Die verschieden große σ -Donorfähigkeit der Phosphine **1**-**4**, die gegenläufig zur Änderung des s-Charakters der P-M'-Bindung bei der Komplexbildung ist, scheint hier die dominierende Rolle zu spielen.

31P-NMR-Spektren

Die ³¹P-NMR-Spektren wurden an gesättigten Lösungen in Tetrahydrofuran aufgenommen. Die Resonanzsignale zeigen nur eine geringe Konzentrationsabhängigkeit. In Tab. 2 sind die ³¹P-NMR-Daten der Komplexe aufgeführt und denen der freien Phosphinliganden gegenübergestellt. Auf Zugabe der entsprechenden freien Phosphinliganden erhielt man stets zwei Signale, auch nach zweistündigem Erwärmen der Proben auf 50-60°. Eines der Signale konnte an Hand des δ -Wertes dem freien Phosphin zugeordnet werden, das andere entsprach dem δ -Wert des Komplexes.

Die Koordinationsverschiebung Δ ist nach *Grim* et al.⁶⁾ ein Maß für die Aufweitung des Bindungswinkels M'-P-M' beim Übergang vom freien Phosphin zum entsprechenden Komplex. Die bei den untersuchten Chromkomplexen erhaltene Reihe der Valenzwinkelaufweitung $1a>4a \approx 3a>2a$ entspricht genau der bereits bei den analogen Tricarbonylnickel(0)-Komplexen gefundenen³⁾. Etwas abweichende Ergebnisse sind bei den Molybdän-(3b>1b>4b) und bei den Wolfram-Komplexen (1c>3c>4c) festzustellen. Überraschend ist hierbei zum einen die erstaunlich hohe Koordinationsverschiebung zwischen 3 und 3b und zum anderen die ungewöhnlich große positive chemische Verschiebung des ³¹P-Resonanzsignals von 4c, die eine noch größere Abschirmung des Phosphors in 4c als im freien 4 anzeigt.

^{*)} In der VII. und X. Mitteil. (Chem. Ber. 103, 1383 und 2350 (1970)) sind jeweils in Tab. 3 als Dimension der δ -Werte versehentlich Hz statt ppm angegeben.

⁶⁾ S. O. Grim, D. A. Wheatland und W. Mc. Farlane, J. Amer. chem. Soc. 89, 5573 (1967).

UV-Spektren

Für die Messung der UV-Spektren gelangten $10^{-4} m$ Lösungen in Cyclohexan zur Anwendung. Wegen der rasch eintretenden Zersetzung gestaltete sich die Messung sehr schwierig und zeitraubend. Es wurde jeweils nur etwa ein Bereich von 100 mµ an einer Probe aufgenommen, dann mußte eine frisch bereitete Lösung eingesetzt werden. In Tab. 3 sind die Wellenlängen und die Extinktionswerte der gefundenen Absorptionsmaxima aufgeführt. Dabei fällt auf, daß es bei allen Verbindungen zwei Bereiche in bezug auf die Extinktion gibt. Die Banden im Bereich 300 –400 mµ haben Extinktionswerte von $10^2 - 10^3$ und entsprechen d→d-Übergängen am Metallatom. Im Bereich 200-300 mµ liegen die Werte der Extinktionskoeffizienten der Bandenmaxima bei $10^4 - 10^5$. Diese Banden entsprechen charge transfer-Übergängen im Molekülverband⁷⁾.

Tab. 3. UV-Spektroskopische Daten (λ_{max} in m μ ; ϵ) der Komplexe (Beckman DB, 10-mm-Quarzküvetten, $10^{-4}m$ in O₂-freiem Cyclohexan)

Verbindung				λ_{\max} (ε)		
(CO) ₅ CrP[C(CH ₃) ₃] ₃	(1 a) ^{a)}	212 (34610)	232 (31000)	255 (21700)		367 (1300)
(CO)5MoP[C(CH3)3]3	(1 b) ^{a)}	215 (37300)	232 (31800)	253 (44000)	297 (3000)	352 (2100)
(CO) ₅ WP[C(CH ₃) ₃] ₃	(1 c) ^{a)}	214 (48700)	231 (46700)	249 (54900)	292 (3300)	352 (2200)
(CO) ₅ CrP[Si(CH ₃) ₃] ₃	(2a)		230 (55800)	250 (43600)		340 (2800)
(CO)5CrP[Ge(CH3)3]3	(3 a)	205 (70900)	233 (52300)	253 (45000)		350 (26200)
(CO)5MoP[Ge(CH3)3]3	(3b)	207 (95200)	235 (100000)	256 (71 500)	300 (9400)	351 (3300)
(CO)5WP[Ge(CH3)3]3	(3c) ^{a)}	209 (53000)	231 (76100)	254 (45 100)	295 (5400)	354 (2700)
(CO) ₅ CrP[Sn(CH ₃) ₃] ₃	(4a) ^{a)}	206 (29600)	231 (52100)		311 (2000)	407 (200)
(CO)5MoP[Sn(CH3)3]3	(4b)	201 (45800)	228 (73 500)	252 (40 300)	318 (3200)	384 (900)
(CO) ₅ WP[Sn(CH ₃) ₃] ₃	(4c) ^{a)}	200 (36200)	226 (75000)	252 (31900)	327 (1900)	375 (500)

a) Wegen schlechter Löslichkeit und Zersetzung konnten die Extinktionen teilweise nur angenähert bestimmt werden.

Die Anordnung der Liganden nach ihrer Fähigkeit, die E_{g} - und T_{2g} -Niveaus aufzuspalten, nennt man die spektrochemische Serie. Bei der Beurteilung der in Tab. 3 aufgeführten Werte ist zu berücksichtigen, daß die UV-Spektren aller Verbindungen breite Banden aufweisen und die Zuordnung der Bandenmaxima daher nur innerhalb einer Genauigkeit von 2–4 m μ möglich war. Aus den in Tab. 3 aufgeführten Werten der langwelligsten UV-Absorption lassen sich die Anregungsenergien der Ligandenfeldaufspaltung für die einzelnen Komplexe berechnen. Aus diesen Energiedifferenzen, die durchwegs in der Größenordnung von 80 kcal/Mol liegen, ergeben sich folgende spektrochemische Reihen:

 $\begin{array}{l} \textbf{2a} \ (84) > \ \textbf{3a} \ (82) > 1 a \ (78) > 4 a \ (70) \\ \textbf{3b} \ (81) = 1 b \ (81) > 4 b \ (74) \\ \textbf{3c} \ (81) = 1 c \ (81) > 4 c \ (76) \end{array}$

⁷⁾ H. L. Schäfer und G. Gliemann, Einführung in die Ligandenfeldtheorie, Akademische Verlagsgesellschaft, Frankfurt/M. 1967.

Unser Dank gilt der Badischen Anilin- & Soda-Fabrik AG, Ludwigshafen, für kostenlose Überlassung von Molybdänhexacarbonyl, Herrn Priv.-Doz. Dr. A. Schmidtpeter, Institut für Anorganische Chemie der Universität München, für die Aufnahme der ³¹P-NMR-Spektren, sowie der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für finanzielle Unterstützung dieser Arbeit.

Beschreibung der Versuche

Darstellung der Komplexe 1a - 7a, 1b - 4b und 1c - 4c: Tab. 4 gibt einen Überblick über die eingesetzten Mengen an Organometallphosphin und Hexacarbonylchrom, -molybdän bzw. -wolfram, über die Reaktionszeiten, sowie über die Ausbeuten und Zersetzungspunkte der erhaltenen Komplexe. Aus Tab. 5 sind die Analysenwerte der Verbindungen zu entnehmen.

g (mMol) Phosphin	g (mMol) M(CO) ₆	ReaktZeit (Stdn.)	Reaktionsprodukt		Ausb. g (%)	ZersP.
2.02 (10) 1	2.20 (10)	5	(CO) ₅ CrP[C(CH ₃) ₃] ₃	(1a)	3,16 (80)	180°
2.02 (10) 1	2.64 (10)	5	(CO)5MoP[C(CH3)3]3	(1 b)	3.51 (80)	190°
2.02 (10) 1	3,52 (10)	5	(CO) ₅ WP[C(CH ₃) ₃] ₃	(1c)	4.21 (80)	150°
2.50 (10) 2	2.20 (10)	4	(CO) ₅ CrP[Si(CH ₃) ₃] ₃	(2a)	4.12 (93)	100°
3.84 (10) 3	2.20 (10)	4	$(CO)_5CrP[Ge(CH_3)_3]_3$	(3a)	5.47 (95)	150°
3.84 (10) 3	2.64 (10)	8	(CO) ₅ MoP[Ge(CH ₃) ₃] ₃	(3b)	5.80 (93)	80°
3.84 (10) 3	3.52 (10)	4	$(CO)_5WP[Ge(CH_3)_3]_3$	(3c)	5.80 (82)	165°
5.22 (10) 4	2.20 (10)	4	$(CO)_5CrP[Sn(CH_3)_3]_3$	(4a)	7.07 (99)	190°
5.22 (10) 4	2.64 (10)	6	(CO) ₅ MoP[Sn(CH ₃) ₃] ₃	(4b)	7.43 (98)	185°
5.22 (10) 4	3.52 (10)	4	(CO) ₅ WP[Sn(CH ₃) ₃] ₃	(4c)	6.77 (80)	180°
2,58 (10) 5	2.20 (10)	5	(CO) ₅ CrPSi(CH ₃) ₃ (C ₆ H ₅) ₂	(5a)	4.05 (90)	80 ^o
2.54 (10) 6	2.20 (10)	5	(CO) ₅ CrP[Si(CH ₃) ₃] ₂ C ₆ H ₅	(6a)	3.97 (89)	70 °
4.36 (10) 7	2.20 (10)	4	(CO) ₅ CrP[Sn(CH ₃) ₃] ₂ C ₆ H	(7a)	5,96 (95)	120°

Tab. 4. Darstellung der Komplexe 1a-7a, 1b, 3b, 4b, 1c, 3c, 4c

	Т	ab	o. 5	• 1	Ana	lysenwerte	der	Kom	blexe	1 a'	7a,	1b,	3ł), 4	ŀЬ,	1 c	, 3	ic,	4	с
--	---	----	------	-----	-----	------------	-----	-----	-------	------	-----	-----	----	------	-----	-----	-----	-----	---	---

	Vammlar	Company and a new al		Analyse				
	Komplex	Summemormer	MolGew. *)	С	Η	М	M	
	-pentacarbonyl-chrom(0)							
1 a	[Tri(tertbutyl)-phosphin]-	$C_{17}H_{27}CrO_5P$	Ber. 394.4	51.77	6.90	13.19		
2a	[Tris(trimethylsilyl)- phosphin]-	$C_{14}H_{27}CtO_5PSi_3$	Ber. 442.6 Gef. 450	37.99 38.10	6.15 6.20	11.75 11.9	19.04 19.1	
3 a	[Tris(trimethylgermyl)- phosphin]-	$C_{14}H_{27}CrGe_3O_5P$	Ber. 576.2 Gef. 590	29.19 30.02	4.72 4.82	9.03 9.1	37.80 38.2	
4a	[Tris(trimethylstannyl)- phosphin]-	$C_{14}H_{27}CrO_5PSn_3$	Ber. 714.5 Gef. 720	23.53 24.06	3.81 3.81	7.28 7.3	49.84 50.2	
5a	[Trimethylsilyl-diphenyl- phosphin]-	$\mathbf{C_{20}H_{19}CrO_5PSi}$	Ber. 450.5 Gef. 470	53.33 53.97	4.25 4.35	11.55 11.5	6.24 6.4	
6a	[Bis(trimethylsilyl)-phenyl- phosphin]-	$C_{17}H_{23}CrO_5PSi_2$	Ber. 446.5 Gef. 472	45.73 45.72	5.19 5.39	11.65 11.9	12.58 12.7	
7 a	[Bis(trimethylstannyl)- phenyl-phosphin]-	$C_{17}H_{23}CrO_5PSn_2$	Ber. 627.8 Gef. 638	32.53 32.63	3.69 3.89	8.29 8.4	37.82 38.1	
	-pentacarbonyl-molybdän(0)							
1 b	[Tri(tertbutyl)-phosphin]-	$C_{17}H_{27}MoO_5P$	Ber. 438.3 Gef. 450	46.58 46.34	6.21 6.31	21.89 22.5		
3 b	[Tris(trimethylgermyl)- phosphin]-	$C_{14}H_{27}Ge_3MoO_5P$	Ber. 620.1 Gef. 584	27.12 26.82	4.39 4.15	15.47 15.7	35.12 35.5	
4 b	[Tris(trimethylstannyl)- phosphin]-	$C_{I4}H_{27}MoO_5PSn_3$	Ber. 758.4 Gef. 770	22.17 22.28	3.59 3.82	12.65 12.9	46.95 47.7	
	-pentacarbonyl-wolfram(0)							
1 c	[Tri(tertbutyl)-phosphin]-	$C_{17}H_{27}O_5PW$	Ber. 526.3 Gef. 538	38.80 38.73	5.17 5.14	34.95 34.82		
3 c	[Tris(trimethylgermyl)- phosphin]-	$\mathrm{C_{14}H_{27}Ge_{3}O_{5}PW}$	Ber, 708.1 Gef, 696	23.75 23.34	3.84 3.91	25.98 25.4	30.76 30.5	
4 c	[Tris(trimethylstannyl)- phosphin]-	$C_{14}H_{27}O_5PSn_3W$	Ber. 846.3 Gef. 860	19.87	3.22	21.73	42.07 42.9	
*) Restin	nnung kryoskopisch in Benzol				2	52.0		

999

Alle Derivate von Hexacarbonylchrom, -molybdän und -wolfram werden unter Ausschluß von Luftsauerstoff und Feuchtigkeit unter sorgfältig von Sauerstoff und Wasser befreitem Stickstoff dargestellt. Eine Lösung der Übergangsmetallcarbonyle in 75 ccm Tetrahydrofuran wurde mit der angegebenen Menge des jeweiligen Organometallphosphins versetzt und in einer Bestrahlungsapparatur unter magnetischem Rühren mit UV-Licht (Quarzlampe Q 81 Hanau) bei Raumtemp. bestrahlt. Die Umsetzungen wurden an Hand der abgespaltenen Mengen Kohlenmonoxid verfolgt. Hierzu wurde ein mit Wasser gefüllter Gasometer mit vorgeschaltetem Trockenrohr (P_4O_{10}) verwendet. Man entfernte nach Abspaltung der berechneten Menge Kohlenmonoxid das Lösungsmittel i.Vak. ($0-20^{\circ}/10^{-3}$ Torr), kristallisierte mehrmals aus Pentan um (Auflösen bei Raumtemp., Ausfällen bei -78°) und sublimierte bei $80-100^{\circ}/10^{-4}-10^{-5}$ Torr.

[427/70]